Nordhaus–Gaddum-type problems for lines in hypergraphs
نویسندگان
چکیده
منابع مشابه
Lines in hypergraphs
One of the De Bruijn Erdős theorems deals with finite hypergraphs where every two vertices belong to precisely one hyperedge. It asserts that, except in the perverse case where a single hyperedge equals the whole vertex set, the number of hyperedges is at least the number of vertices and the two numbers are equal if and only if the hypergraph belongs to one of simply described families, nearpen...
متن کاملRecent Advances on Dirac-type Problems for Hypergraphs
A fundamental question in graph theory is to establish conditions that ensure a graph contains certain spanning subgraphs. Two well-known examples are Tutte’s theorem on perfect matchings and Dirac’s theorem on Hamilton cycles. Generalizations of Dirac’s theorem, and related matching and packing problems for hypergraphs, have received much attention in recent years. New tools such as the absorb...
متن کاملSpectral Extremal Problems for Hypergraphs
In this paper we consider spectral extremal problems for hypergraphs. We give two general criteria under which such results may be deduced from ‘strong stability’ forms of the corresponding (pure) extremal results. These results hold for the α-spectral radius defined using the α-norm for any α > 1; the usual spectral radius is the case α = 2. Our results imply that any hypergraph Turán problem ...
متن کاملTuran Related Problems for Hypergraphs
For an /-uniform hypergraph 3and an integer n, the Turan number ex(n, F) for F on n vertices is denned to be the maximum size \Q\ of a hypergraph Q C [n] not containing a copy of F C2\ as a subhypergraph. For 1 = 1 and f = Kk , the complete graph on k vertices, these numbers were determined by P. Turan. However, for I > 2, and nearly any hypergraph F, the Turan problem of determining the number...
متن کاملQuasi-Random Hypergraphs and Extremal Problems for Hypergraphs
The regularity lemma was originally developed by Szemerédi in the seventies as a tool to resolve a long standing conjecture of Erdős and Turán, that any subset of the integers of positive upper density contains arbitrary long arithmetic progressions. Soon this lemma was recognized as an important tool in extremal graph theory and it also has had applications to additive number theory, discrete ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2016
ISSN: 0166-218X
DOI: 10.1016/j.dam.2015.06.016