Nordhaus–Gaddum-type problems for lines in hypergraphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lines in hypergraphs

One of the De Bruijn Erdős theorems deals with finite hypergraphs where every two vertices belong to precisely one hyperedge. It asserts that, except in the perverse case where a single hyperedge equals the whole vertex set, the number of hyperedges is at least the number of vertices and the two numbers are equal if and only if the hypergraph belongs to one of simply described families, nearpen...

متن کامل

Recent Advances on Dirac-type Problems for Hypergraphs

A fundamental question in graph theory is to establish conditions that ensure a graph contains certain spanning subgraphs. Two well-known examples are Tutte’s theorem on perfect matchings and Dirac’s theorem on Hamilton cycles. Generalizations of Dirac’s theorem, and related matching and packing problems for hypergraphs, have received much attention in recent years. New tools such as the absorb...

متن کامل

Spectral Extremal Problems for Hypergraphs

In this paper we consider spectral extremal problems for hypergraphs. We give two general criteria under which such results may be deduced from ‘strong stability’ forms of the corresponding (pure) extremal results. These results hold for the α-spectral radius defined using the α-norm for any α > 1; the usual spectral radius is the case α = 2. Our results imply that any hypergraph Turán problem ...

متن کامل

Turan Related Problems for Hypergraphs

For an /-uniform hypergraph 3and an integer n, the Turan number ex(n, F) for F on n vertices is denned to be the maximum size \Q\ of a hypergraph Q C [n] not containing a copy of F C2\ as a subhypergraph. For 1 = 1 and f = Kk , the complete graph on k vertices, these numbers were determined by P. Turan. However, for I > 2, and nearly any hypergraph F, the Turan problem of determining the number...

متن کامل

Quasi-Random Hypergraphs and Extremal Problems for Hypergraphs

The regularity lemma was originally developed by Szemerédi in the seventies as a tool to resolve a long standing conjecture of Erdős and Turán, that any subset of the integers of positive upper density contains arbitrary long arithmetic progressions. Soon this lemma was recognized as an important tool in extremal graph theory and it also has had applications to additive number theory, discrete ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2016

ISSN: 0166-218X

DOI: 10.1016/j.dam.2015.06.016